3.286 \(\int \cos ^4(e+f x) (a+b \sin ^2(e+f x)) \, dx\)

Optimal. Leaf size=83 \[ \frac{(6 a+b) \sin (e+f x) \cos ^3(e+f x)}{24 f}+\frac{(6 a+b) \sin (e+f x) \cos (e+f x)}{16 f}+\frac{1}{16} x (6 a+b)-\frac{b \sin (e+f x) \cos ^5(e+f x)}{6 f} \]

[Out]

((6*a + b)*x)/16 + ((6*a + b)*Cos[e + f*x]*Sin[e + f*x])/(16*f) + ((6*a + b)*Cos[e + f*x]^3*Sin[e + f*x])/(24*
f) - (b*Cos[e + f*x]^5*Sin[e + f*x])/(6*f)

________________________________________________________________________________________

Rubi [A]  time = 0.0511575, antiderivative size = 83, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 4, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.19, Rules used = {3191, 385, 199, 203} \[ \frac{(6 a+b) \sin (e+f x) \cos ^3(e+f x)}{24 f}+\frac{(6 a+b) \sin (e+f x) \cos (e+f x)}{16 f}+\frac{1}{16} x (6 a+b)-\frac{b \sin (e+f x) \cos ^5(e+f x)}{6 f} \]

Antiderivative was successfully verified.

[In]

Int[Cos[e + f*x]^4*(a + b*Sin[e + f*x]^2),x]

[Out]

((6*a + b)*x)/16 + ((6*a + b)*Cos[e + f*x]*Sin[e + f*x])/(16*f) + ((6*a + b)*Cos[e + f*x]^3*Sin[e + f*x])/(24*
f) - (b*Cos[e + f*x]^5*Sin[e + f*x])/(6*f)

Rule 3191

Int[cos[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(p_.), x_Symbol] :> With[{ff = FreeF
actors[Tan[e + f*x], x]}, Dist[ff/f, Subst[Int[(a + (a + b)*ff^2*x^2)^p/(1 + ff^2*x^2)^(m/2 + p + 1), x], x, T
an[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f}, x] && IntegerQ[m/2] && IntegerQ[p]

Rule 385

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> -Simp[((b*c - a*d)*x*(a + b*x^n)^(p +
 1))/(a*b*n*(p + 1)), x] - Dist[(a*d - b*c*(n*(p + 1) + 1))/(a*b*n*(p + 1)), Int[(a + b*x^n)^(p + 1), x], x] /
; FreeQ[{a, b, c, d, n, p}, x] && NeQ[b*c - a*d, 0] && (LtQ[p, -1] || ILtQ[1/n + p, 0])

Rule 199

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> -Simp[(x*(a + b*x^n)^(p + 1))/(a*n*(p + 1)), x] + Dist[(n*(p +
 1) + 1)/(a*n*(p + 1)), Int[(a + b*x^n)^(p + 1), x], x] /; FreeQ[{a, b}, x] && IGtQ[n, 0] && LtQ[p, -1] && (In
tegerQ[2*p] || (n == 2 && IntegerQ[4*p]) || (n == 2 && IntegerQ[3*p]) || Denominator[p + 1/n] < Denominator[p]
)

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rubi steps

\begin{align*} \int \cos ^4(e+f x) \left (a+b \sin ^2(e+f x)\right ) \, dx &=\frac{\operatorname{Subst}\left (\int \frac{a+(a+b) x^2}{\left (1+x^2\right )^4} \, dx,x,\tan (e+f x)\right )}{f}\\ &=-\frac{b \cos ^5(e+f x) \sin (e+f x)}{6 f}+\frac{(6 a+b) \operatorname{Subst}\left (\int \frac{1}{\left (1+x^2\right )^3} \, dx,x,\tan (e+f x)\right )}{6 f}\\ &=\frac{(6 a+b) \cos ^3(e+f x) \sin (e+f x)}{24 f}-\frac{b \cos ^5(e+f x) \sin (e+f x)}{6 f}+\frac{(6 a+b) \operatorname{Subst}\left (\int \frac{1}{\left (1+x^2\right )^2} \, dx,x,\tan (e+f x)\right )}{8 f}\\ &=\frac{(6 a+b) \cos (e+f x) \sin (e+f x)}{16 f}+\frac{(6 a+b) \cos ^3(e+f x) \sin (e+f x)}{24 f}-\frac{b \cos ^5(e+f x) \sin (e+f x)}{6 f}+\frac{(6 a+b) \operatorname{Subst}\left (\int \frac{1}{1+x^2} \, dx,x,\tan (e+f x)\right )}{16 f}\\ &=\frac{1}{16} (6 a+b) x+\frac{(6 a+b) \cos (e+f x) \sin (e+f x)}{16 f}+\frac{(6 a+b) \cos ^3(e+f x) \sin (e+f x)}{24 f}-\frac{b \cos ^5(e+f x) \sin (e+f x)}{6 f}\\ \end{align*}

Mathematica [A]  time = 0.14942, size = 64, normalized size = 0.77 \[ \frac{3 (16 a+b) \sin (2 (e+f x))+(6 a-3 b) \sin (4 (e+f x))+72 a e+72 a f x-b \sin (6 (e+f x))+12 b f x}{192 f} \]

Antiderivative was successfully verified.

[In]

Integrate[Cos[e + f*x]^4*(a + b*Sin[e + f*x]^2),x]

[Out]

(72*a*e + 72*a*f*x + 12*b*f*x + 3*(16*a + b)*Sin[2*(e + f*x)] + (6*a - 3*b)*Sin[4*(e + f*x)] - b*Sin[6*(e + f*
x)])/(192*f)

________________________________________________________________________________________

Maple [A]  time = 0.045, size = 92, normalized size = 1.1 \begin{align*}{\frac{1}{f} \left ( b \left ( -{\frac{\sin \left ( fx+e \right ) \left ( \cos \left ( fx+e \right ) \right ) ^{5}}{6}}+{\frac{\sin \left ( fx+e \right ) }{24} \left ( \left ( \cos \left ( fx+e \right ) \right ) ^{3}+{\frac{3\,\cos \left ( fx+e \right ) }{2}} \right ) }+{\frac{fx}{16}}+{\frac{e}{16}} \right ) +a \left ({\frac{\sin \left ( fx+e \right ) }{4} \left ( \left ( \cos \left ( fx+e \right ) \right ) ^{3}+{\frac{3\,\cos \left ( fx+e \right ) }{2}} \right ) }+{\frac{3\,fx}{8}}+{\frac{3\,e}{8}} \right ) \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(f*x+e)^4*(a+b*sin(f*x+e)^2),x)

[Out]

1/f*(b*(-1/6*sin(f*x+e)*cos(f*x+e)^5+1/24*(cos(f*x+e)^3+3/2*cos(f*x+e))*sin(f*x+e)+1/16*f*x+1/16*e)+a*(1/4*(co
s(f*x+e)^3+3/2*cos(f*x+e))*sin(f*x+e)+3/8*f*x+3/8*e))

________________________________________________________________________________________

Maxima [A]  time = 1.46822, size = 131, normalized size = 1.58 \begin{align*} \frac{3 \,{\left (f x + e\right )}{\left (6 \, a + b\right )} + \frac{3 \,{\left (6 \, a + b\right )} \tan \left (f x + e\right )^{5} + 8 \,{\left (6 \, a + b\right )} \tan \left (f x + e\right )^{3} + 3 \,{\left (10 \, a - b\right )} \tan \left (f x + e\right )}{\tan \left (f x + e\right )^{6} + 3 \, \tan \left (f x + e\right )^{4} + 3 \, \tan \left (f x + e\right )^{2} + 1}}{48 \, f} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(f*x+e)^4*(a+b*sin(f*x+e)^2),x, algorithm="maxima")

[Out]

1/48*(3*(f*x + e)*(6*a + b) + (3*(6*a + b)*tan(f*x + e)^5 + 8*(6*a + b)*tan(f*x + e)^3 + 3*(10*a - b)*tan(f*x
+ e))/(tan(f*x + e)^6 + 3*tan(f*x + e)^4 + 3*tan(f*x + e)^2 + 1))/f

________________________________________________________________________________________

Fricas [A]  time = 1.93832, size = 159, normalized size = 1.92 \begin{align*} \frac{3 \,{\left (6 \, a + b\right )} f x -{\left (8 \, b \cos \left (f x + e\right )^{5} - 2 \,{\left (6 \, a + b\right )} \cos \left (f x + e\right )^{3} - 3 \,{\left (6 \, a + b\right )} \cos \left (f x + e\right )\right )} \sin \left (f x + e\right )}{48 \, f} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(f*x+e)^4*(a+b*sin(f*x+e)^2),x, algorithm="fricas")

[Out]

1/48*(3*(6*a + b)*f*x - (8*b*cos(f*x + e)^5 - 2*(6*a + b)*cos(f*x + e)^3 - 3*(6*a + b)*cos(f*x + e))*sin(f*x +
 e))/f

________________________________________________________________________________________

Sympy [A]  time = 4.95717, size = 250, normalized size = 3.01 \begin{align*} \begin{cases} \frac{3 a x \sin ^{4}{\left (e + f x \right )}}{8} + \frac{3 a x \sin ^{2}{\left (e + f x \right )} \cos ^{2}{\left (e + f x \right )}}{4} + \frac{3 a x \cos ^{4}{\left (e + f x \right )}}{8} + \frac{3 a \sin ^{3}{\left (e + f x \right )} \cos{\left (e + f x \right )}}{8 f} + \frac{5 a \sin{\left (e + f x \right )} \cos ^{3}{\left (e + f x \right )}}{8 f} + \frac{b x \sin ^{6}{\left (e + f x \right )}}{16} + \frac{3 b x \sin ^{4}{\left (e + f x \right )} \cos ^{2}{\left (e + f x \right )}}{16} + \frac{3 b x \sin ^{2}{\left (e + f x \right )} \cos ^{4}{\left (e + f x \right )}}{16} + \frac{b x \cos ^{6}{\left (e + f x \right )}}{16} + \frac{b \sin ^{5}{\left (e + f x \right )} \cos{\left (e + f x \right )}}{16 f} + \frac{b \sin ^{3}{\left (e + f x \right )} \cos ^{3}{\left (e + f x \right )}}{6 f} - \frac{b \sin{\left (e + f x \right )} \cos ^{5}{\left (e + f x \right )}}{16 f} & \text{for}\: f \neq 0 \\x \left (a + b \sin ^{2}{\left (e \right )}\right ) \cos ^{4}{\left (e \right )} & \text{otherwise} \end{cases} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(f*x+e)**4*(a+b*sin(f*x+e)**2),x)

[Out]

Piecewise((3*a*x*sin(e + f*x)**4/8 + 3*a*x*sin(e + f*x)**2*cos(e + f*x)**2/4 + 3*a*x*cos(e + f*x)**4/8 + 3*a*s
in(e + f*x)**3*cos(e + f*x)/(8*f) + 5*a*sin(e + f*x)*cos(e + f*x)**3/(8*f) + b*x*sin(e + f*x)**6/16 + 3*b*x*si
n(e + f*x)**4*cos(e + f*x)**2/16 + 3*b*x*sin(e + f*x)**2*cos(e + f*x)**4/16 + b*x*cos(e + f*x)**6/16 + b*sin(e
 + f*x)**5*cos(e + f*x)/(16*f) + b*sin(e + f*x)**3*cos(e + f*x)**3/(6*f) - b*sin(e + f*x)*cos(e + f*x)**5/(16*
f), Ne(f, 0)), (x*(a + b*sin(e)**2)*cos(e)**4, True))

________________________________________________________________________________________

Giac [A]  time = 1.13837, size = 90, normalized size = 1.08 \begin{align*} \frac{1}{16} \,{\left (6 \, a + b\right )} x - \frac{b \sin \left (6 \, f x + 6 \, e\right )}{192 \, f} + \frac{{\left (2 \, a - b\right )} \sin \left (4 \, f x + 4 \, e\right )}{64 \, f} + \frac{{\left (16 \, a + b\right )} \sin \left (2 \, f x + 2 \, e\right )}{64 \, f} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(f*x+e)^4*(a+b*sin(f*x+e)^2),x, algorithm="giac")

[Out]

1/16*(6*a + b)*x - 1/192*b*sin(6*f*x + 6*e)/f + 1/64*(2*a - b)*sin(4*f*x + 4*e)/f + 1/64*(16*a + b)*sin(2*f*x
+ 2*e)/f